w1=-20.6%, w2=1.7%, w3=96.5%
Kerry Back
For any target expected return, find the least-risk portfolio.
Assume \(r_s=r_b=r_f\) (risk-free rate).
Set \(x_f = x_s - x_b\).
portfolio expected return is \(x_f r_f + w^\top \bar{r}\).
The accounting identify \(x_s + \sum w_i = 1 + x_b\) implies \(x_f = 1-\sum w_i\), so portfolio expected return is
\[r_f + w^\top (\bar{r}-r_f1_n)\]
\[r_f + w^\top (\bar{r}-r_f1_n)\]
subject to
\[r_f + w^\top (\bar{r}-r_f1_n) = \bar{r}_{\text{targ}}\]
\[\sum_{i=1}^n w_i^2\sigma_i^2 + 2 \sum_{i=1}^n \sum_{j=i+1}^n w_iw_j\sigma_{ij}\]
\[w_i^2\sigma_i^2 + 2 \sum_{j \neq i} w_iw_j\sigma_{ij}\]
\[2 \sum_{j=1}^n w_j \sigma_{ij}\]
Equal benefit-cost ratios means \((\bar{r}_i-r_f)/C_i^\top w =k\).
Rearrange: \(k C_i^\top w = \bar{r}_i - r_f\)
Stack: \(k C w = \bar{r} - r_f 1_n\)
Solve:
\[w = (1/k)C^{-1}(\bar{r}-r_f1_n)\]
\[r_f + \frac{1}{k}(\bar{r}-r_f1_n)^\top C^{-1}(\bar{r}-r_f1_n)\]
\[k = \frac{(\bar{r}-r_f1_n)^\top C^{-1}(\bar{r}-r_f1_n)}{\bar{r}_{\text{targ}}-r_f}\]
w1=-20.6%, w2=1.7%, w3=96.5%