Kerry Back
\[ \bar{r}_p = w_1 \bar{r}_1 + w_2 \bar{r}_2\]
\[w_1r_1 + w_2r_2 - (w_1 \bar{r}_1 +w_2\bar{r}_2)\]
\[w_1(r_1 - \bar{r}_1) + w_2(r_2 - \bar{r}_2)\]
The deviation of the portfolio return from its mean is
\[w_1(r_1 - \bar{r}_1) + w_2(r_2 - \bar{r}_2)\]
and \((a+b)^2 = a^2 + b^2 + 2ab\), so the squared deviation is sum of
\[w_1^2 \text{var}(r_1) + w_2^2 \text{var}(r_2) + 2 w_1 w_2 \text{cov}(r_1, r_2)\]
\[\left(\frac{1}{2}\right)^2 (0.01) + \left(\frac{1}{2}\right)^2 (0.01) = 0.005\]
\[w_1^2 \text{var}(r_1) + w_2^2 \text{var}(r_2)\]
plus
\[2 w_1 w_2 \times \text{corr}(r_1, r_2) \times\text{std}(r_1)\times\text{std}(r_2)\]
Portfolio variance is lower when correlation is lower.
The slope (beta) of the regression line of \(r_2\) on \(r_1\) is
\[\frac{\text{cov}(r_1, r_2)}{\text{var}(r_1)} = \text{corr}(r_1, r_2) \times \frac{\text{std}(r_2)}{\text{std}(r_1)}\]
std dev of CVX is 8.18%
std dev of AAPL is 8.50%
corr is 0.153
cov is 10.7%^2
beta is 0.16
std dev of CVX is 8.18%
std dev of XOM is 8.58%
corr is 0.889
cov is 62.4%^2
beta is 0.93
cvx = 0.0818 # std devs
aapl = 0.0850
xom = 0.0858
cvx_aapl = 0.153 # correlations
cvx_xom = 0.889
w1 = 0.5 # portfolio weights
w2 = 0.5
# 50% CVX and 50% AAPL
w1**2 * cvx**2 + w2**2 * aapl**2 + 2*w1*w2*cvx_aapl*cvx*aapl
# 50% CVX and 50% XOM
w1**2 * cvx**2 + w2**2 * xom**2 + 2*w1*w2*cvx_xom*cvx*xom